

Über die ersten monosubstituierten Derivate von Triboran(7). – Kristall- und Molekülstruktur von Benzoyloxytriboran(7)

Herbert Binder*^a, Bernd Brellochs^a, Bernd Frei^a, Arndt Simon^b und Bernhard Hettich^b

Institut für Anorganische Chemie der Universität Stuttgart^a, Pfaffenwaldring 55, D-7000 Stuttgart 80

Max-Planck-Institut für Festkörperforschung^b, Heisenbergstraße 1, D-7000 Stuttgart 80

Eingegangen am 27. Dezember 1988

Key Words: Triborane(7) derivatives

Generiert man B_6H_{14} in situ in Gegenwart von Carbonsäuren, Monothiocarbonsäuren, Dialkoxydithiophosphorsäuren oder Diaryldithiophosphinsäuren, so entstehen unter H₂-Abspaltung die Chelat-stabilisierten Verbindungen des Typs B_3H_6X , wobei $X = RCO_2$, RCOS, (RO)₂PS₂ und R₂PS₂ sein kann. Zum gleichen Verbindungstyp gelangt man bei der Reaktion zwischen bestimmten Triboran(7)-Addukten bzw. B_4H_{10} mit Carbonsäuren. Von Ph-CO₂B₃H₆ wurde eine Röntgenstrukturanalyse durchgeführt. Sämtliche Verbindungen zeigen im ¹¹B-NMR-Spektrum dynamisches Verhalten.

The First Monosubstituted Derivatives of Triborane(7). - Crystal and Molecular Structure of Benzoyloxytriborane(7)

 B_6H_{14} generated in situ has been shown to react with carboxylic acids, monothiocarboxylic acids, dialkoxydithiophosphorus acids, and diaryldithiophosphinic acids by splitting off H_2 to form the chelate-stabilized compounds of the type B_3H_6X , where X = RCO_2 , RCOS, $(RO)_2PS_2$, R_2PS_2 . Reactions of carboxylic acids with some triborane(7) adducts or B_4H_{10} produce the same type of compounds. The X-ray structure determination of Ph - $CO_2B_3H_6$ is reported. All compounds show fluxional behaviour on the ¹¹B-NMR time scale.

Im Gegensatz zu den zahlreichen neutralen Ligand – Triboran(7)-Addukten¹⁾ B_3H_7-L (L = Lewis-Base) wurde bisher nicht über neutrale substituierte Derivate des

Abb. 1. Energetisch tiefliegende Strukturen von B_6H_{14} , aus SCFbzw. CPF-Rechnungen (1-6: B-Atome)

"B₃H₇"berichtet. Kürzlich fanden wir, daß die Reaktion von B₃H₈^{\odot} mit I₂ in inerten Lösungsmitteln unterhalb -40°C eine einfache Quelle für die In-situ-Darstellung von (B₃H₇)₂ = B₆H₁₄ ist [Gl. (1), (2)²].

$$\mathbf{B}_{3}\mathbf{H}_{8}^{\ominus} + \mathbf{I}_{2} \rightarrow 1/2 (\mathbf{B}_{3}\mathbf{H}_{7})_{2} + \mathbf{I}^{\ominus} + \mathbf{H}\mathbf{I}$$
(1)

$$B_3H_8^{\ominus} + HI \rightarrow 1/2 (B_3H_7)_2 + H_2 + I^{\ominus}$$
 (2)

Gegenionen sind $\operatorname{NEt}_{4}^{\oplus}$, $\operatorname{N}(n\operatorname{Bu})_{4}^{\oplus}$ oder $\operatorname{PPh}_{4}^{\oplus}$. Abb. 1 zeigt die für das dynamische Molekül $\operatorname{B}_{6}\operatorname{H}_{14}(1)$ nach SCFund CPF-Rechnungen ermittelten Strukturen³⁾.

Einen weiteren Weg zu 1 bildet die Cl^{\ominus} -Abstraktion aus B₃H₇Cl^{\ominus} mit AlCl₃ bei -45 °C in CH₂Cl₂ [Gl. (3)].

$$\operatorname{NEt}_{4}^{\oplus} B_{3} H_{7} Cl^{\ominus} + AlCl_{3} \rightarrow 1/2 \ 1 + \operatorname{NEt}_{4}^{\oplus} AlCl_{4}^{\ominus} \qquad (3)$$

Reaktion zwischen B₆H₁₄ und Carbonsäuren

Versetzt man eine Lösung von Iod in 1,2-Dichlorethan bei Raumtemperatur mit der äquivalenten Menge R-COOH und gibt dann rasch die stöchiometrische Menge $NEt_4^{\oplus} B_3 H_8^{\ominus}$ (in 1,2-Dichlorethan) zu, so erfolgt eine exotherme Reaktion unter heftiger H₂-Entwicklung [Gl. (4)].

$$1/2 \quad 1 + R - COOH \longrightarrow H_2B \bigoplus I \bigoplus C - R + H_2 \qquad (4)$$

$$(R - COSH) \qquad H \bigoplus O I \bigoplus C - R + H_2 \qquad (4)$$

$$H \bigoplus O I \bigoplus C - R + H_2 \qquad (4)$$

$$H \bigoplus O I \bigoplus O I \bigoplus C - R + H_2 \qquad (4)$$

Die Reaktion ist bei Raumtemperatur innerhalb weniger Minuten unter vollständiger Entfärbung der Lösung beendet. Bei 0°C ist die Umsetzung nicht so heftig, dauert aber bis zur Entfärbung ca. 3 h. Die Reaktion läßt sich bei Temperaturen zwischen -10 und 0°C bequem durch gasvolumetrische Messung des Wasserstoffs und gleichzeitige ¹¹B-NMR-spektroskopische Untersuchung der Reaktionslösung verfolgen (Abb. 2).

 Abb. 2. Reaktionsverfolgung der Umsetzung NEt[⊕] B₃H[⊕]₃/I₂/ Me-COOH bei 0°C; •: Anteil (%) B₃H₆O₂C - Me nach ¹¹B-NMR-Spektrum, O: Umsatz (%) zu B₃H₆O₂C - Me (H₂-Entwicklung)

Abb. 3. 128.35-MHz-¹¹B-NMR-Spektrum von $B_3H_6O_2C-H$ (1a)

Der entwickelte Wasserstoff entspricht 96% der Theorie. Zusätzlich scheidet sich ein farbloser, fein kristalliner Niederschlag von $\operatorname{NEt}_{4}^{\oplus} I^{\ominus}$ ab, wenn 1 aus $\operatorname{NEt}_{4}^{\oplus} B_{3} H_{8}^{\ominus}$ generiert wird.

Die ¹¹B-NMR-Spektren der Carbonsäure-Derivate von **2** zeigen zwei Septetts mit den relativen Intensitäten 1:2. Die Septettaufspaltung beweist, daß diese Verbindungen dynamische Struktur besitzen, in der die terminalen und die Brükken-H-Atome ihre Positionen tauschen. Innerhalb der NMR-Zeitskala koppeln dann alle sechs H-Atome der B_3H_6 -Einheit mit den drei B-Atomen und liefern so die beobachteten Septetts. Die beiden Chelat-gebundenen B-Atome unterscheiden sich in ihrer chemischen Umgebung gegenüber der unsubstituierten BH₂-Gruppe; man findet daher zwei Signale mit den relativen Intensitäten 1:2 (Abb. 3).

Das Auftreten von zwei Signalgruppen zeigt darüber hinaus, daß die Carboxylat-Gruppe statisch gebunden ist. Die relativ kleine (¹¹B-¹H)-Kopplungskonstante weist gleichfalls auf das Vorliegen einer dynamischen Struktur, d.h. einer Fluktuation der H-Atome hin.

Den chemischen Verschiebungen ist zu entnehmen, daß die Chelat-koordinierten B-Atome elektronisch stärker abgeschirmt sind als die BH₂-Gruppe. Die formal negative Ladung der B₃H₆-Einheit verteilt sich danach stärker auf diese beiden B-Atome mit der Folge, daß die B-H-Bindungen polarer werden; die B-H-Bindungen des unsubstituierten B-Atoms besitzen mehr kovalenten Charakter. Der Fermi-Kontakt-Term, der für die Größe der (¹¹B-¹H)-Kopplung verantwortlich ist, sollte aus diesem Grunde in den B-H-Bindungen des letzteren B-Atoms größer sein. Die experimentell ermittelten ¹J(¹¹B-¹H)-Kopplungskonstanten sind mit dieser Interpretation in guter Übereinstimmung; die ¹J(¹¹B-¹H)-Kopplungskonstanten des unsubstituierten B-Atoms sind in allen Carbonsäure-Derivaten von **2** größer als diejenigen der beiden benachbarten B-Atome (s. Tab. 1).

Die Fluktuation der H-Atome läßt sich durch eine Reihe topologischer Strukturen beschreiben, die aufgrund ihres unterschiedlichen Energieinhaltes verschiedenes Gewicht haben (Schema 1).

Schema 1. Topologische Darstellung der Moleküle von 2 zur Beschreibung der Fluktuation der H-Atome

Allen Strukturen ist gemeinsam, daß sie im ¹¹B-NMR-Spektrum zwei Resonanzlinien im Verhältnis 1:2 erwarten lassen. Das B_3H_6 -Gerüst in 2 zeigt, daß in 1 die ursprünglichen B_3H_7 -Einheiten vorliegen und daß die sie verknüpfenden H-Brücken (vgl. Abb. 1) die reaktiven Stellen sind. Die Reaktion nach Gl. (4) läßt sich in einer Vielzahl von Lösungsmitteln (wie CH₂Cl₂, CHCl₃, 1,2-Dichlorethan, C₆H₅Cl, Dioxan) durchführen. Überraschenderweise läuft die Umsetzung auch in Toluol ab (heterogene Reaktion), nicht dagegen in aliphatischen Kohlenwasserstoffen, wie Hexan oder Pentan. Dies deutet auf eine Aktivierung der I₂-Moleküle durch das π -System des Aromaten hin (Charge-Transfer-Komplex). Die B₃H₆O₂C-R-Derivate sind nach dieser Methode in nahezu quantitativen Ausbeuten zugänglich.

Die analogen Monothiocarbonsäure-Derivate lassen sich in gleicher Weise synthetisieren; die ¹¹B-NMR-Spektren zeigen, wie zu erwarten ist, drei unaufgespaltene Resonanzsignale mit den relativen Intensitäten 1:1:1 (Abb. 4).

Das Hochfeldsignal ist dem an das S-Atom koordinierten B-Atom zuzuordnen, dann folgt die Resonanzlinie des an

das O-Atom koordinierten B-Atoms und schließlich die der unsubstituierten BH₂-Gruppe. Die Verbindungen dieses Typs zeigen in Lösung im ¹¹B-NMR-Spektrum keine den Carbonsäure-Derivaten vergleichbaren (¹¹B-¹H)-Kopplungen, sondern nur breite Singuletts, derer Halbwertsbreite im ¹¹B{¹H}-NMR-Spektrum reduziert wird. Dies läßt ebenfalls auf dynamisches Verhalten schließen; die ¹J(¹¹B-¹H)-Kopplungskonstanten sind jedoch erheblich kleiner als jene zuvor beschriebenen. Die Möglichkeiten, die zu B₃H₆OSC – Me führen, sind in Schema 2 zusammengefaßt.

Die Reaktion von 1 mit $(EtO)_2P(S)SH$ bzw. Ph₂P(S)SH liefert schließlich die Dithio-Derivate von 2, in denen zwei B-Atome der B₃H₆-Einheit an S-Atome koordiniert sind, 2i und 2k (massenspektrometrisch identifiziert).

Das ¹¹B-NMR-Spektrum liefert zwei weit auseinanderliegende Resonanzsignale mit den relativen Intensitäten 1:2. Das Hochfeldsignal mit der doppelten Intensität entspricht den beiden über je ein S-Atom koordinierten B-Atomen; dieses läßt im 25.67-MHz-¹¹B-NMR-Spektrum drei Linien des zu erwartenden Septetts erkennen. Danach tauschen auch in dieser Reihe die sechs H-Atome der B₃H₆-Einheit bei Raumtemperatur ihre Positionen, d. h. die Moleküldynamik bleibt erhalten, unabhängig von der Natur der Chelat-Gruppe.

Reaktion zwischen B₃H[⊕]₈ und AlCl₃/CH₃COOH

Analog Gl. (3) kann bei der Reaktion zwischen $B_3H_8^{\ominus}$ und AlCl₃ eine H^{\ominus}-Abstraktion erfolgen, wobei 1 in situ erzeugt wird [Gl. (5)].

$$\mathbf{B}_{3}\mathbf{H}_{8}^{\Theta} + \mathrm{AlCl}_{3} \rightarrow 1/2 \mathbf{1} + \mathrm{HAlCl}_{3}^{\Theta}$$
(5)

Führt man die Reaktion in Gegenwart einer Carbonsäure durch, erhält man ebenfalls Derivate von 2. Die primäre Bildung des $B_3H_7O_2C - Me^{\Theta}$ -Ions aus $B_3H_8^{\Theta}$ und Me-COOH spielt sicher nur eine untergeordnete Rolle, da diese Reaktion nur mit kleiner Geschwindigkeit abläuft, wie ¹¹B-NMR-spektroskopisch festgestellt wurde. Gibt man unter starkem Rühren zu einer frisch bereiteten äquimolaren Mischung von AlCl₃ und Me-COOH in 1,2-Dichlorethan bei -78 °C rasch eine Lösung von NEt^{\oplus} B₃H^{\ominus} in 1,2-Dichlorethan, so tritt während des Aufwärmens auf Raumtemperatur eine heftige H2-Entwicklung ein. Innerhalb von Minuten entsteht eine klare Lösung, die im ¹¹B-NMR-Spektrum ausschließlich die Signale von 2b zeigt. Wird die Reihenfolge bei der Zugabe der Reaktionspartner nicht genau eingehalten, erhält man Produktgemische, die vorwiegend Zersetzungsprodukte darstellen. Die Reaktion läßt sich in diversen chlorierten Kohlenwasserstoffen sowie in Toluol durchführen. An Stelle von NEt₄[⊕] B₃H[⊖] kann auch $PPh_4^{\oplus} B_3 H_8^{\ominus}$ verwendet werden.

Darstellung von 2 aus Triboran(7)-Addukten und R-COOH

Bestimmte Triboran(7)-Addukte, B_3H_7-L (L = Lewis-Base), reagieren mit Carbonsäuren unter H₂-Abspaltung und Verdrängung des Liganden L durch R-COO^{\ominus} [Gl. (6)].

$$B_{3}H_{7}-L + R - COOH \rightarrow B_{3}H_{6}O_{2}C - R + H_{2} + L \quad (6)$$
2

Dazu gehören $B_3H_7Cl^{\ominus}$, $B_3H_7 - THF$ und $B_3H_7O_2PF_2^{\ominus 4}$; diese Addukte reagieren in 1,2-Dichlorethan bei Raumtemperatur mit aliphatischen Carbonsäuren (H-COOH, Me-COOH) in glatter Reaktion zu den Verbindungen 2a und 2b. Aminborane $(B_3H_7 - NEt_3 \text{ und } B_3H_7 - Pyridin$ reagieren mit keiner der untersuchten Carbonsäuren R-COOH, (R = H, Me, Et, CF₃). Die Umsetzung von $B_{1}H_{7}Cl^{\ominus}$ mit Me-COOH wurde gasvolumetrisch und ¹¹B-NMR-spektroskopisch bei Raumtemperatur parallel verfolgt. Die entwickelte H₂-Menge betrug nach 5 h Reaktionszeit 82% und stimmte mit dem aus dem ¹¹B-NMR-Spektrum ermittelten Umsatz gut überein. Wichtig bei der Umsetzung von $B_3H_7Cl^{\ominus}$ mit Me-COOH ist, daß das $B_3H_7Cl^{\ominus}$ -Salz vor der Reaktion Ether-frei isoliert wird⁴⁾. Andernfalls bilden sich nahezu ausschließlich Zersetzungsprodukte des $B_{3}H_{8}^{\ominus}$. Ether führt offensichtlich zum Zerfall der ungeladenen Zwischenstufe $[B_3H_6Cl]$, die auf dem Weg zu 2 intermediär auftritt. Bei der Reaktion von B₁H₂-THF mit Me-COOH in THF oder Pentan/THF (10:1) läuft diese Zersetzungsreaktion nicht ab. B_3H_7 -THF bildet sich auch als Zwischenverbindung bei der Umsetzung von NEt[⊕]₄ B₃H[⊖]₈ mit Iod und Me-COOH in THF. Eine weitere Möglichkeit **2b** herzustellen, bietet die Reaktion von $B_3H_7 - O_2C - Me^{\Theta}$ in 1,2-Dichlorethan mit der stöchiometrischen Menge etherischer HCl. Hier stört die Anwesenheit von Ether nicht, da nach erfolgter H₂-Abspaltung keine instabile Zwischenstufe durchlaufen wird [Gl. (7)].

Die ¹¹B-NMR-Spektren der Anionen $B_3H_7-O_2C-R^{\ominus}$ lassen ebenfalls eine dynamische Struktur erkennen. Die H^{\ominus} -Abstraktion führt dann zwanglos zu den Tautomeren 2 (Schema 3).

Darstellung von 2 aus B₄H₁₀ und Carbonsäuren

Tetraboran(10) wurde nach einer von uns kürzlich entwickelten Methode hergestellt⁵⁾. Bei der Umsetzung mit Carbonsäuren (wie z. B. Me-COOH in Toluol oder 1,2-Dichlorethan) tritt bei Raumtemperatur spontane Gasentwicklung ein. Verfolgt man die Reaktion ¹¹B-NMR-spektroskopisch, findet man eine zunehmende Verbreiterung des Tieffeldsignals von B_4H_{10} bei $\delta = -6.1$ bei gleichzeitiger Schema 3

Intensitätsabnahme des Hochfeldsignals von B_4H_{10} bei $\delta =$ -40.7. Nach ca. 3 h war kein B_4H_{10} mehr nachzuweisen. Das¹¹B{¹H}-NMR-Spektrum zeigt danach zwei nahe beieinander liegende Signale mit einem Intensitätsverhältnis von 1:2, die identisch sind mit dem Spektrum von 2b. Um eventuelle Reaktionszwischenstufen nachweisen zu können, wurde die Reaktion bei -78 °C durchgeführt; bei dieser Temperatur erfolgt jedoch keine Reaktion. Auch bei langsamem Erwärmen auf Raumtemperatur waren keine Intermediate zu erkennen. Da B_4H_{10} schon bei +18°C siedet, sind Temperaturen um 0°C zu empfehlen. Gegenüber der Reaktion bei Raumtemperatur verlängern sich die Reaktionszeiten auf das 2-3fache. Leitet man das entstehende Gas durch eine Kühlfalle (-78 °C), in der sich eine Lösung von Pyridin in CH₂Cl₂ befindet, so findet man nach beendeter Reaktion im ¹¹B-NMR-Spektrum nur ein Quartett bei $\delta = -11.5 [^{1}J(^{11}B^{-1}H) = 104 \text{ Hz}], \text{ das von BH}_{3}$ -Pyridin herrührt. Außerdem entsteht noch Wasserstoff, der gasvolumetrisch bestimmt wurde. Bei der Reaktion findet offensichtlich nicht nur eine Substitution, sondern auch ein Abbau des B₄-Gerüsts von B₄H₁₀ statt. Diese Befunde deuten auf den in Gl. (8) dargestellten Reaktionsverlauf hin.

$$B_4H_{10} + Me - COOH \rightarrow B_3H_6O_2C - Me + H_2 + 1/2(B_2H_6)$$
 (8)
2b

Die stärkeren Säuren wie CF_3 -COOH oder CCl_3 -COOH gehen dagegen mit B_4H_{10} keine Reaktion ein. Es ist anzunehmen, daß bei der Reaktion zwischen B_4H_{10} und Carbonsäuren nicht das acide H-Atom der COOH-Gruppe, sondern die Carbonyl-Gruppe die primären Reaktionsschritte einleitet. In rascher Folge tritt dann H_2 -Abspaltung, Verdrängung von "BH₃" (als B_2H_6) und Koordination der Carboxylat-Gruppe an ein zweites B-Atom ein (Schema 4). Tab. 1. NMR-Parameter [$\delta^{11}B$, $^{1}J(^{11}B^{1}H)$, $\delta^{1}H$, $\delta^{13}C$, $\delta^{31}P$] der monosubstituierten Triboran(7)-Derivate 2 in CDCl₃

Verh	X	δ ¹¹ B [ppm] ¹ /(¹¹ B ¹ H) [H ₇]		δ ⁱ H [ppm]	(RCOOH)	δ ¹³ C [nnm]		(RCOOH)	(RCOO ^e)
1010.		B-1, -2	B-3	o m [ppm]	(10001)	0 C [bbm]		(10001)	(1000)
2a	0 ₂ C - H	-9.1 40.9	-6.2 ^{a)} 50.7	CH 7.93 BH 0.6 – 4.8 (breite Bande)	8.03	C-1 1	73.9	166.3	171.4 ^{b)}
2b	O ₂ C – Me	-9.2 34.1	-6.7ª) 40.3	CH ₃ 2.30 BH 0.5 – 4.7 (breite Bande)	2.10	C-1 1 C-2	88.1 18.9	177.2 21.1	181.7 ⁵⁾ 24.4
2c	0 ₂ C – Et	9.0 34.0	- 7.0 ^{by} -	CH ₃ 1.22 CH ₂ 2.58 BH 0.8-4.6 (breite Bande)	1.15 2.39	C-1 19 C-2 2 C-3	91.3 26.0 8.3	180.4 27.18 9.0	185.1 ^{b)} 31.3 10.8
2d	O ₂ C – Ph	-8.7 33.0	- 6.7 ^{a)} 45.0	BH 0.6–4.8 (breite Bande)		C-1 14 C-2 17 C-3,-3' 17 C-4,-4' 17 C-5 17	81.2 23.8 31.4 29.1 36.6	177.3 ^{b)} 129.3 130.2 128.5 133.8	
2e	O ₂ C-C ₆ H ₄ Cl-(3)	-8.3 ^{b)}	Tieffeld- schulter, nicht aufge- löst	BH 0.6–5.3 (breite Bande)		C-1 11 C-2 12 C-3 11 C-4 11 C-5 11 C-6 12 C-7 12	79.2 25.1 30.5 34.8 35.8 29.8 28.7	171.0 ^{b)} 131.0 130.3 134.8 133.9 129.8 128.3	
2f	$O_2C - C_6H_4CH_3 - (4)$	- 7.5 J(¹¹ B ¹ H) nicht aufgelöst	-6.0 ^{by}			C-1 18 C-2 12 C-3,-3' 13 C-4,-4' 12 C-5 14	80.0 21.3 31.1 29.3 43.4	167.8 ^{b)} 120.5 129.7 129.4 143.3	
2g	SOC – Me	BS -27.9^{16} BO -3.4 BH ₂ -6.8 ¹ J(¹¹ B ¹ H) = 48 Hz							
2b	SOC – Ph	BS -28.6 ^{b)} BO -3.1 BH ₂ -6.8							
2i	S ₂ P(OEt) ₂	-26.6 J(¹¹ B ¹ H) nicht aufgelöst	- 7.2 ⁶⁾	δ ³¹ P: 136.2 86.7 [HSSP(OEt) ₂]					
2k	S ₂ PPh ₂	-22.1 J(¹¹ B ¹ H) nicht aufgelöst	-4.7 ⁶⁴	δ ³¹ P: 107.1 70.6 (HSSPPh ₂)					

^{a)} 128.35-MHz-¹¹B-NMR-Spektrum. - ^{b)} 28.88-MHz-¹¹B-NMR-Spektrum, 22.63-MHz-¹³C-NMR-Spektrum.

Schema 4

Zusätzliche Hinweise, die diesen Reaktionsmechanismus erhärten, ergaben Umsetzungen von B_4H_{10} mit den entsprechenden Estern, Me-CO₂Et reagiert in CH₂Cl₂ bei -78°C unter Verdrängung von "BH₃" (\rightarrow B₂H₆) zu dem Addukt B₃H₇-O(EtO)C-Me [δ = -14.2 und -15.8 (2:1)], während CF₃-CO₂Me keine Reaktion erkennen läßt.

In Tab. 1 finden sich Daten der ¹H-, ¹¹B-, ¹³C- und ³¹P-NMR-Spektren.

Massenspektren

Die massenspektrometrische Fragmentierung der Verbindungen 2d, 2f, 2h und 2k ist durch die Bildung der Kationen $[M^+ - H_2]$ gekennzeichnet, die jedoch sehr unterschiedlich ausgeprägt sind. Im Falle von **2f** wird $[M^+ - H_2]$ zum Basispeak. Charakteristisch ist ferner für die Fragmentierung von **2d** und **2f** die Abspaltung von BH₃ bzw. B₂H₄ und O₂. Im Falle von **2d** wird $[M^+ - B_2H_4 - O_2]$ zum Basispeak. Den analogen Basispeak liefert die Verbindung **2k** durch Abspaltung von B₂H₄ und 2 S. Ein entsprechendes Fragment findet man für **2h**, $[M^+ - B_2H_4 - O - S]$; den Basispeak bildet hier das Molekül-Ion $[M^+ - BH_2SH]$.

Für die Förderung unserer Arbeiten danken wir dem Fonds der Chemischen Industrie, der Deutschen Forschungsgemeinschaft und der Bayer AG für Chemikalienspenden. Herrn Prof. Dr. F. G. A. Stone, University of Bristol, danken wir für die Möglichkeit, NMR-Spektren an den Geräten JEOL GX 400, JEOL GX 270 und JEOL FX 90 aufzunehmen. Herrn Dr. W. Rozdzinski, Institut für Organische Chemie der Universität Stuttgart, gebührt unser Dank für die Aufnahme zahlreicher Massenspektren.

Experimenteller Teil

Alle Untersuchungen wurden unter Feuchtigkeitsausschluß unter N₂-Schutzgas durchgeführt. Die NMR-Spektren (¹H, ¹¹B, ¹³C, ³¹P) wurden mit den Geräten Bruker WP 80 bzw. JEOL GX 400, JEOL GX 270, JEOL FX 90 aufgenommen; Standards BF₃-OEt₂ (δ^{11} B), TMS (δ^{1} H, δ^{13} C), 85% H₃PO₄ (δ^{31} P). Positive δ -Werte kennzeichnen eine chemische Verschiebung nach niederer Feldstärke relativ zum Standard. Die Massenspektren wurden mit dem Massenspektrometer Varian MAT 711 aufgenommen.

Formyloxytriboran(7) (2a): Man versetzt 685 mg (2.7 mmol) I₂ in 50 ml 1,2-Dichlorethan bei Raumtemp. mit 248 mg (5.4 mmol) Ameisensäure und gibt unter kräftigem Rühren rasch 921 mg (5.4 mmol) NEt $parable B_3H_8^{\ominus}$ zu. Die Reaktion ist innerhalb weniger Minuten unter vollständiger Entfärbung der Lösung beendet; ¹¹B-NMR-spektroskopisch ist die Umsetzung quantitativ. Man trennt die flüchtigen Bestandteile von entstandenem NEtpreterment Preterment Preterment Preterment Preterment $kondensieren in eine Kühlfalle (<math>-78 \,^{\circ}$ C) ab. Das Kondensat zeigt im ¹¹B-NMR-Spektrum nur die Signale von 2a. Letzteres bildet mit 1,2-Dichlorethan ein Azeotrop und kann daraus nicht lösungsmittelfrei isoliert werden. – Eine mit oben genannten Mengen durchgeführte Umsetzung bei 0°C lieferte 114 ml H₂ (97%).

Acetyloxytriboran(7) (2b): Zu einer frisch bereiteten Mischung aus 207 mg (1.55 mmol) AlCl₃ und 93 mg (1.55 mmol) Essigsäure in 10 ml 1,2-Dichlorethan werden bei -78 °C unter starkem Rühren 176 mg (1.03 mmol) NEt # B₃H $^{\odot}_{8}$ rasch hinzugefügt. Nach dem Erwärmen auf Raumtemp. ist die Reaktion beendet; ¹¹B-NMRspektroskopisch ist die Umsetzung quantitativ. 2b wird mit dem Lösungsmittel zusammen in eine Kühlfalle (-78 °C) umkondensiert; 2b bildet mit 1,2-Dichlorethan ein Azeotrop. Um 2b lösungsmittelfrei zu erhalten, wurde die Reaktion in Benzol durchgeführt. Nach dem Umkondensieren wird das Kondensat auf -10 °C gekühlt, wobei Benzol erstarrt, und im Vakuum bei 50 Torr 2b auskondensiert. 2b kann daraus nur in kleinen Mengen erhalten werden. - MS: m/z (%) = 96 (2) [M⁺ - H₂].

Propionyloxytriboran(7) (2c): Darstellung analog 2a. 2c bildet mit 1,2-Dichlorethan ein Azeotrop; 2c wurde nur ¹¹B-NMR-spektroskopisch charakterisiert.

Benzoyloxytriboran(7) (2d): Man versetzt eine Lösung von 444 mg (1.75 mmol) I_2 in 30 ml 1,2-Dichlorethan bei Raumtemp. mit 427 mg (3.50 mmol) Benzoesäure; dazu gibt man rasch unter kräftigem Rühren 579 mg (3.50 mmol) NEt \mathcal{P} B₃H $^{\odot}_{\mathcal{P}}$, gelöst in 15 ml 1,2-Dichlorethan. Die Reaktion ist innerhalb weniger Minuten beendet, was an der vollständigen Entfärbung zu erkennen ist. Danach wird das Lösungsmittel im Rotationsverdampfer entfernt. Zurück bleibt ein gelbliches Öl, das noch viermal mit Pentan extrahiert wird. Die vereinigten Extrakte werden vom Pentan befreit, wobei **2d** als gelblicher Feststoff zurückbleibt. Dieser wird im Ölpumpenvak. bei 40°C sublimiert; es bilden sich farblose Kristalle, die sich bei Tageslicht langsam gelb färben und im Dunkeln wieder farblos werden; Ausb. 502 mg (90%), Schmp. 38°C. MS: m/z (%) = 158 (89) $[M^+ - H_2]$, 146 (22) $[M^+ - BH_3]$, 102 (100) $[M^+ - B_2H_4O_2]$.

```
\begin{array}{cccc} C_7 H_{11} B_3 O_2 \ (159.6) & \mbox{Ber.} \ C \ 52.68 & \mbox{H} \ 6.95 & \mbox{B} \ 20.32 \\ & \mbox{Gef.} \ C \ 52.30 & \mbox{H} \ 6.75 & \mbox{B} \ 20.12 \end{array}
```

3-Chlorbenzoyloxytriboran(7) (2e): Darstellung analog 2d; Ausb. 85%, Öl. C₇H₁₀ClB₃O₂ (194.0) Ber. C 43.33 H 5.19 Gef. C 43.00 H 5.10

4-Methylbenzoyloxytriboran(7) (2f): Darstellung analog 2d. Das Produkt wird durch Sublimation im Ölpumpenvak. bei 100 °C gereinigt, wobei 2f als farbloser Feststoff erhalten wird; Ausb. 95%, Schmp. 86 °C. 2f zeigt ebenso wie 2d Photochromie (reversible Gelbfärbung). – MS: m/z (%) = 172 (100) [M⁺ – H₂], 160 (28) [M⁺ – BH₃], 116 (66) [M⁺ – B₂H₄O₂].

Acetylthiotriboran(7) (2g): Darstellung analog 2a. 2g bildet mit 1,2-Dichlorethan ein Azeotrop; 2g wurde nur ¹¹B-NMR-spektroskopisch charakterisiert.

Benzoylthiotriboran(7) (2h): Darstellung analog 2d. Die Reaktionsdauer bis zur vollständigen Entfärbung der Reaktionslösung beträgt 1 h. Das Produkt wird als gelbes Öl erhalten; Ausb. (80%). Die Verbindung zersetzt sich im Ölpumpenvak. bei 60°C. – MS: m/z (%) = 174 (4) [M⁺ – H₂], 144 (29) [M⁺ – S], 130 (100) [M⁺ – BH₂SH], 102 (90) [M⁺ – B₂H₄OS].

```
\begin{array}{cccc} C_7H_{11}B_3OS \ (175.7) & Ber. \ C \ 47.86 & H \ 6.31 & B \ 18.46 \\ & Gef. \ C \ 47.56 & H \ 6.13 & B \ 18.30 \end{array}
```

Diethoxythiophosphorylthiotriboran(7) (2i): Darstellung analog 2a. 2i wurde nur ¹¹B-NMR-spektroskopisch charakterisiert.

Diphenylthiophosphinylthiobriboran(7) (2k): Zu einer Mischung von 444 mg (1.75 mmol) I₂ und 876 mg (3.50 mmol) Diphenyldithiophosphinsäure in 30 ml 1,2-Dichlorethan gibt man unter kräftigem Rühren 579 mg (3.50 mmol) NEt $^{\text{B}}_{7}$ B₃H $^{\text{O}}_{8}$. Die Reaktionszeit bis zur völligen Entfärbung der Reaktionslösung beträgt ca. 45 min. Danach wird von ausgefallenem NEt $^{\text{P}}_{7}$ I^O abgefrittet und vom Filtrat das Lösungsmittel im Rotationsverdampfer entfernt. Es hinterbleibt ein farbloser Rückstand, der aus Pentan umkristallisiert wird; Ausb. 800 mg (79.5%), Schmp. 76°C (Zers.). – MS: m/z(%) = 286 (6) [M⁺ – H₂], 228 (8) [M⁺ – B₂H₆S], 198 (100) [M⁺ – B₂H₄S].

 $\begin{array}{c} C_{12}H_{16}B_3PS_2 \ (287.8) \\ Ber. \ C \ 50.08 \ H \ 5.60 \ B \ 11.27 \ P \ 10.76 \ S \ 22.28 \\ Gef. \ C \ 49.88 \ H \ 5.43 \ B \ 10.95 \ P \ 10.63 \ S \ 21.98 \end{array}$

Kristall- und Molekülstruktur von $B_3H_6O_2C - Ph$ (2d)

Für die Strukturuntersuchung geeignete Kristalle von 2d (Schmp. ca. 40°C) wurden bei $p \approx 10^{-2}$ Torr durch Abscheidung an einem ca. 15°C kalten Kühlfinger erhalten. Die Messung der Beugungsdaten und die Strukturlösung erfolgten zunächst in der Aufstellung P2/n; anschließend wurde in P2/c transformiert und verfeinert. Mit isotropen Temperaturfaktoren für B, C und O wurde R = 0.09erreicht. Die H-Atome konnten bei diesem Stand über Differenz-Fourier-Synthesen lokalisiert werden, ihre Positionen wurden bei

Abb. 5. Molekülstruktur von B_3H_8 -Benzoat, die B-, C- und O-Atome sind mit 80% ihrer Aufenthaltswahrscheinlichkeit gezeichnet; (a) die Atombezeichnungen entsprechen denen in Tab. 3 und 4, (b) die planare Anordnung des Benzoat-Restes zum B_3H_6 -Fragment ist erkennbar

der abschließenden Rechnung mit anisotropen Temperaturfaktoren (für alle Atome außer H) mitverfeinert. Einzelheiten sind in Tab. 2 zusammengestellt. Orts- und isotrope Temperaturparameter sind in Tab. 3 aufgeführt; Tab. 4 enthält interatomare Abstände und Winkel (vgl. hierzu Abb. 5). Weitere Angaben zur Struktur können vom Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2 unter Angabe der Hinterlegungsnummer CSD-53484, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Diskussion: In B_3H_6 -Benzoat ist das Benzoat-Anion Chelat-artig and das B_3H_6 -Kation gebunden. Durch diese Bindung ergeben sich interessante Änderungen in der Detailgeometrie des Triboran-Fragmentes gegenüber der vom $B_3H_8^{\odot}$. dessen Molekülgestalt in $Cs^{\oplus} B_3H_8^{\odot}$ kürzlich⁶⁾ genau ermittelt wurde. Man beobachtet vor allem folgende markante Unterschiede, wobei sich die in Klammern angegebenen Werte auf die äquivalenten Daten für $B_3H_8^{\odot}$ nach Lit.⁶⁾ beziehen.

Tab. 2.	Kristalldaten und Angaben zur Strukturuntersuchung vo	on
	$B_3H_6 - Benzoat$	

Kristallsystem:	monoklin, Raumgruppe P2/c (Nr. 13)
Gitterkonstanten:	a = 992.3(12), b = 583.7(11),
	$c = 1742.3(13) \text{ pm}, \beta = 117.55(8)^{\circ};$
	$V = 894.7 10^6 \text{ pm}^3, Z = 4,$
	$d_{\rm x} = 1.18 {\rm g} \cdot {\rm cm}^{-3}$
Kristallgröße:	ca. $0.1 \times 0.5 \times 2 \text{ mm}$
Messung:	CAD4, Mo- K_{α} , -150° C, ω -scan mit $\Delta \omega =$
•	$1.5^\circ + 0.35 \tan \Theta$
Bereich:	$4^\circ \le 2\Theta \le 54^\circ$; 2230 Reflexe in P2/n (a =
	1556.0, $b = 583.7$, $c = 992.3$ pm, $\beta =$
	96.89°) mit $0 \le h \le 14, 0 \le k \le 7, -12$
	$\leq k \leq 12$; für die Rechnungen verwendet
	890 Reflexe mit $I < 3\sigma(I)$
Lösung:	SHELXTL (1976); Solv 1.6 in P2/n
Verfeinerung:	$r = 0.053, R_w = 0.057, \text{GOOF} = 0.906 \text{ mit}$
U	890 Reflexen in $P2/c$

Tab. 3. Ortsparameter und isotrope Temperaturfaktoren für B_3H_6 -Benzoat (Raumgruppe P2/c)

Atom	×	у	2	U eq
C C1 C2 C3 C4 C5 C6 O1 O2 B1 B2 B3 H2 H3 H4 H5 H6 HB12 H83B H13 H23 H13 H23	0.4391(4) 0.5835(4) 0.6420(4) 0.7807(4) 0.8621(4) 0.8041(4) 0.3832(2) 0.3638(2) 0.2318(4) 0.2339(5) 0.584(5) 0.821(4) 0.956(4) 0.860(4) 0.629(4) 0.132(4) 0.129(4) 0.340(4) 0.252(5) 0.214(4)	$\begin{array}{c} 0.1495(6)\\ 0.0692(6)\\ -0.139(6)\\ -0.2146(6)\\ -0.0807(7)\\ 0.1266(7)\\ 0.3402(4)\\ 0.0256(4)\\ 0.3992(7)\\ 0.3402(4)\\ 0.0256(4)\\ 0.3992(7)\\ 0.4049(8)\\ -0.232(8)\\ -0.362(7)\\ -0.132(7)\\ 0.214(7)\\ 0.214(7)\\ 0.214(7)\\ 0.355(6)\\ 0.426(5)\\ 0.049(7)\\ 0.479(7)\\ 0.442(7)\\ 0.560(8)\\ 0.146(6) \end{array}$	0.1052(2) 0.1139(2) 0.154(2) 0.1523(2) 0.0936(2) 0.0839(2) 0.0690(1) 0.1326(1) 0.0664(3) 0.1180(2) 0.1672(3) 0.174(3) 0.190(2) 0.138(2) 0.058(2) -0.001(2) 0.069(2) 0.167(2) 0.227(3) 0.186(2)	224(12) 223(12) 264(14) 306(14) 284(15) 328(15) 281(13) 290(9) 274(10) 351(16) 283(18) 379(19) 641(135) 310(95) 433(109) 364(100) 364(100) 363(101) 267(88) 533(116) 503(113) 556(119) 662(136) 348(97)

Der Winkel H13-B3-H23 ist auf 143° aufgeweitet (132°) ; die von H13 und H23 gebildeten Brücken sind sehr unsymmetrisch, ca. 155 pm zum endständigen B3 und ca. 115 pm zu B1 bzw. B2 (129/104 pm). Während der Abstand d(B1-B2) = 183.1 pm unverändert ist (183.2 pm), sind die Abstände zu dem endständigen B3-Atom mit d(B3-B1,2) = 175.0 pm geringfügig verkürzt.

Die Aufweitung des H13-B3-H23-Winkels und die deutliche Verlängerung der B3-H13,23-Abstände machen deutlich, daß diese H-Atome ihre Brückenfunktion weitgehend verloren haben, während gleichzeitig die direkten B-B-Bindungen zwischen B3 und B1 bzw. B2 geringfügig verstärkt sind.

Die für das B₃H₆-Kation im Benzoat experimentell gefundene Abstandsverteilung läßt sich leicht quantitativ verstehen. Folgt man Pauling⁷, so sollte die Summierung aller nach d_i $d(1) - 60 \cdot \log n_i$ berechneten Bindungsordnungen n_i für B-B- und B-H-Bindungen für B₃H^{\oplus} den Wert 7 (14 Elektronen) ergeben. Mit den Werten⁷ d(1) = 162 und d(1) = 113 pm für die B-B- bzw. B-H-Einfachbindung erhält man den Wert 8.33, der den Erwartungswert

Tab.	4.	Interatomare	Abstände	[pm] und	Bindu	ngswinkel	۲°٦	füı
	В	$_{3}H_{6} - Benzoat$, Standard	abweichui	igen in	Klammer	ລີ້	

		B1-B2	183.1(6)	C -	C1	144.7(5)	
		-B3	174.7(7)	-	01	127.4(4)	
		-01	152.1(6)	-	02	128.1(5)	
		-HB1	114(3)	C1-	C2	138.5(5)	
		-H13	111(5)	-	C6	139.6(6)	
		B2-B3	175.2(6)	C2-	C3	138.6(5)	
		-02	153,9(5)	-	Н2	96(5)	
		-HB2	107(3)	C3-	C4	138.1(6)	
		-H23	118(4)	-	Н3	98(4)	
		B3-HB3A	111(3)	C4-	C5	137.9(5)	
		-HB3B	112(4)	-	H 4	96(4)	
		-H13	150 (5)	C5-	C6	137.9(6)	
		-H23	158(4)	-	H5	96(4)	
H13	- B1	- H81	109.2(3)	HB3B	- 83	- HB3A	113.7(3)
H13	_	- 01	105.4(3)	НВЗВ	-	- H13	100.9(3)
H13	-	- B3	58.3(3)	HB38	-	- H23	98.5(2)
H13	-	- B2	116.8(3)	нвзв	-	- B1	121.1(3)
HB1	-	- 01	115.5(2)	нвзв	-	- B2	118.8(2)
HB1	-	- B2	112.6(2)	нвза	-	- H13	100.9(3)
01	-	- B3	114.9(3)	HB3A	-	- H23	99.7(3)
01	-	~ B2	96.9(3)	HB 3A	-	- B1	114.9(2)
B3		- B2	58.6(3)	нвза	-	- B2	116.2(2)
				H13	-	- H23	143.0(2)
HB2	- B2	- H23	114.7(3)	H13	-	- B1	39.0(2)
HB2	-	- 02	111.7(2)	H13	-	- B2	102.1(2)
HB2	-	- B3	132.6(2)	H23	-	- B1	104.1(2)
HB2	-	- B1	104.9(2)	H23	-	- B2	40.9(1)
H23	-	- 02	107.2(2)	B1	-	- B2	63.1(3)
H23	-	- B3	61.6(2)				
H23	-	- B1	119.9(2)	B1	- H13	- B3	82.6(3)
02	-	- B3	114.1(3)				
02	-	- B1	97.0(3)	B2	- H23	- B3	77.4(2)
B3	-	- B1	58.3(3)				
				01	- C	- 02	118.8(3)
				01	-	- C1	121.2(3)
				02	-	- C1	119.9(3)
				с	- 02	- B2	113.1(3)
				С	- 01	- 81	114.3(3)

um 19% übersteigt. Normiert man auf $\Sigma n_i = 7.0$, so ergeben sich für die verschiedenen B-Atome jeweils die Bindungsordnungssummen 3.05 (B3), 2.50 (B1) und 2.54 (B2). Danach ist in der vorgefundenen Anordnung das B3-Atom mit den weit entfernten Liganden H13 und H23 bereits valenzmäßig abgesättigt. Dagegen sind für B1 und B2 zusätzlich B-O-Bindungen mit jeder Bindungsordnung 0.5 zur Valenzabsättigung nötig. Die gefundenen Abstände d(B-O) = 152 bzw. 154 pm ergeben mit $n = \exp[-(d - 136.6)/$ 37] nach⁸⁾ in der Tat Bindungsordnungen nahe 0.5 (0.66 bzw. 0.62). Der Aufbau von B₃H₆-Benzoat entspricht damit weitgehend dem eines Salzes in der Grenzformulierung von Schema 5.

Schema 5

CAS-Registry-Nummern

2a: 112373-60-1 / **2b**: 112373-64-5 / **2c**: 112373-61-2 / **2d**: 112373-62-3 / **2e**: 119747-78-3 / **2f**: 119747-79-4 / **2g**: 112373-63-4 / **2h**: 119747-80-7 / **2i**: 119747-81-8 / **2k**: 119747-82-9 / NEt $\mathfrak{P}_{3}H\mathfrak{P}$: 12555-74-7 / B₆H₁₄: 12008-20-7 / CH₃CH₂CO₂H: 79-09-4 / PhCO₂H: 65-85-0 / 3-ClC₆H₄CO₂H: 535-80-8 / 4-MeC₆H₄CO₂H: 99-94-5 / CH₃COSH: 507-09-5 / PhCOSH: 98-91-9 / (EtO)₂P(S)SH: 20 298-06-6 / Ph₂P(S)SH: 1015-38-9

- ¹⁾ ^(a) G. Kodama, R. W. Parry, J. C. Carter, J. Am. Chem. Soc. 81 (1959) 3534. ^{1b)} W. R. Deever, D. M. Ritter, Inorg. Chem. 7 (1968) 1036. ^{1e)} R. T. Paine, R. W. Parry, Inorg. Chem. 11 (1972) 268. ^{1d)} A. R. Dodds, G. Kodama, Inorg. Chem. 15 (1976) 741. ^{1e)} P. Chung Choi, J. M. Morris, J. Chem. Soc., Polyan Targa. Dalton Trans. 1984, 2119.
- ²⁾ B. Brellochs, H. Binder, Angew. Chem. 100 (1988) 270; Angew. Chem. Int. Ed. Engl. 27 (1988) 262.
 ³⁾ H. Horn, R. Ahlrichs, C. Kölmel, Chem. Phys. Lett. 150 (1988)
- 263.
- ⁴⁾ B. Brellochs, *Dissertation*, Universität Stuttgart, 1986.
 ⁵⁾ B. Brellochs, H. Binder, Z. Naturforsch., Teil B, 43 (1988) 648.
- ⁶⁾ H. J. Deiseroth, O. Sommer, H. Binder, K. Wolfer und B. Frei, Z. Anorg. Allg. Chem., im Druck. ⁷¹ L. Pauling, Die Natur der Chemischen Bindung, S. 347, Verlag
- Chemie 1973.
- ⁸⁾ I. D. Brown in Structure and Bonding in Crystals II (M. O'Keefe, A. Navrotsky, Hrsg.), S. 18, Academic Press, New York, London, Toronto, Sydney, San Francisco 1981.

[354/88]